Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs
نویسنده
چکیده
Alternative acyclic directed mixed graphs (ADMGs) are graphs that may allow causal effect identification in scenarios where Pearl’s original ADMGs may not, and vice versa. Therefore, they complement each other. In this paper, we introduce a sound algorithm for identifying arbitrary causal effects from alternative ADMGs. Moreover, we show that the algorithm is complete for identifying the causal effect of a single random variable on the rest. We also show that the algorithm follows from a calculus similar to Pearl’s do-calculus.
منابع مشابه
Causal Effect Identification in Acyclic Directed Mixed Graphs and Gated Models
We introduce a new family of graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. We show that these models are suitable for representing causal models with additive error terms. We provide a set of sufficient graphical criteria for the identification of arbitrary causal effects when the new models contain directed and und...
متن کاملLearning Acyclic Directed Mixed Graphs from Observations and Interventions
We introduce a new family of mixed graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between any pair of nodes. The new family includes Richardson’s acyclic directed mixed graphs, as well as Andersson-Madigan-Perlman chain graphs. These features imply that no family of mixed grap...
متن کاملAn Alternative Markov Property for Chain Graphs
Graphical Markov models use graphs ei ther undirected directed or mixed to rep resent possible dependences among statis tical variables Applications of undirected graphs UDGs include models for spatial de pendence and image analysis while acyclic directed graphs ADGs which are espe cially convenient for statistical analysis arise in such elds as genetics and psychomet rics and as models for exp...
متن کاملAlternative Markov and Causal Properties for Acyclic Directed Mixed Graphs
We extend Andersson-Madigan-Perlman chain graphs by (i) relaxing the semidirected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. We introduce global, and ordered local and pairwise Markov properties for the new models. We show the equivalence of these properties for strictly positive probability distributions. We also...
متن کاملSeparators and Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework
Principled reasoning about the identifiability of causal effects from non-experimental data is an important application of graphical causal models. We present an algorithmic framework for efficiently testing, constructing, and enumerating m-separators in ancestral graphs (AGs), a class of graphical causal models that can represent uncertainty about the presence of latent confounders. Furthermor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017